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A parametrization of the SU 3 group is given which is regular in the neighborhood 
of the unit element. The left-invariant differential forms are explicitly calculated, 
and a left- and right-invariant metric tensor is exhibited in these parameters. 

1. INTRODUCTION 

The S U  3 group appears in many fields of physics as a symmetry. It was 
proposed as a symmetry for strong interactions (Gell-Mann, 1962; 
Ne'eman, 1961). In nuclear physics it was used extensively for the classifica- 
tion of nuclear states (Elliott, 1963). This group gives the canonical transfor- 
mations which leave the Hamiltonian of the three-dimensional harmonic 
oscillator invariant (Baker, 1956; Jauch and Hill, 1940). The operations of 
S U  3 transform a solution of the equations of motion of the oscillator into 
solutions of the same energy. Since the harmonic oscillator is a widely used 
model in physics, its symmetry group has numerous applications. Quite 
generally, the group appears always in quantum mechanics when three 
equivalent states of a physical system have to be considered together, with 
their possible equivalent descriptions achieved by unitary transformations. 

t Work supported in part by a grant from Research Corporation, Providence, Rhode Island. 
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2. PARAMETRIZATION OF THE MANIFOLD 

While even beginners in quantum mechanics know the explicit form of 
the transformations of the S U  E group, the explicit transformations for S U  3 
are not so well known. The usual representation of a three-dimensional 
special-unitary matrix, 

Idll U12 UI3) 
U= UEt u22 u23 (1) 

U31 U32 U33 

by means of nine complex (18 real) variables, Uik, needs ten side conditions: 

uiju* k = 3jk, det U = 1 (2) 

which are quadratic and cubic in the variables. The group manifold is 
constructed by the intersection of nine quadratic and one cubic hyper- 
surface in a space of 18 dimensions. Such a representation is not usable for 
many purposes. 

Unitary matrices in any dimension can be parametrized by the ex- 
ponential map or the Cayley map. The exponential map represents a unitary 
matrix as 

U = e 'H (3) 

where H is Hermitian. A special-unitary matrix is obtained with a vanishing 
trace of H (Chevalley, 1946). Since this is a linear side condition, it can 
easily be taken into account. For SU3 one has 

H=�89 A ( A = I  . . . 8 )  (4) 

where the )L4 are the Gell-Mann matrices, and the x A are a set of real 
manifold coordinates. In Appendix A we give the explicit form of the S U  3 
transformations represented by the exponential map. 

Although the general properties of a Lie group can be discussed best in 
the exponential map, it turns out to be too unwieldy for the calculation of 
the invariant forms and the metric tensor. 

The Cayley map represents a unitary matrix also in terms of a Hermi- 
tian matrix, H, by 

U =  ( l + i H ) ( 1 - i H ) - '  (5) 
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A special unitary matrix (in three dimensions 2) is obtained by the side 
condition: 

t r H = d e t H  (6) 

This is again a nonlinear side condition. The Cayley map appears also 
unsuitable for our calculations. 

Parametrizations of S U  2 are often given in terms of Eulerian angles. 
This method can be generalized to higher dimension (Weyl, 1950; 
Murnaghan, 1962; Hermann, 1966; Wigner, 1968; Madumezia, 1971). How- 
ever, explicit parametrizations of the Euler angle type suffer often from the 
following diseases: the coordinates in the group manifold are singular at the 
origin (the unit element), and the topology of the group is misrepresented. 
Since we want to match the Lie algebra, i.e., the tangent space, at the unit 
element to GeU-Mann's coordinates, we need a parametrization which is 
nonsingular in the neighborhood of the unit element. 

This second disease is altogether incurable, since the group manifold is 
topologically different from the R 8. But there are still differences in morbid- 
ity for the various parametrizations. One would like to cover as much as 
possible of the group manifold, and one should be able to represent a 
fundamental toroid which consists of a Cartan subgroup, i.e., a maximal 
Abelian subgroup, represented by all the simultaneously diagonal elements 
in S U  3. This toroid ought to be described by two longitudinal angles (i.e., 
modulo 27r). As we have not found in the literature a suitable parametriza- 
tion, we shall give one that meets our requirements. 

It is proved (Epstein, 1974) that an arbitrary U 3 matrix can be factored 
in the form: 

U= D.U,.Uz.U 3 (7) 

where 

with 

D = diag(e i8' , e i~-', e i~3) (8a) 

-- ~r < 3j ~< ~r ( j  = 1 , 2 , 3 )  ( 8 b )  /  00) 
Ut=  0 u, Bi (8c) 

0 -/3~' ul 

2For dimension n = 2, the condition is trH = 0; for n greater than 3, the condition becomes 
rapidly much more complex with increasing n. 
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u 2 0 f12) 
v2 = o 1 0 

-#~ 0 u2 
(8d) 

u3 33 O) 
U3 ~m - ~  u 3 0 

0 0 1 

(8e) 

The matrices Uj have as submatrices a particular class of SU 2 matrices 
described by the conditions 

u j =  + ( l - [ f l j [z )  '/z (9) 

that is, 

uj real with 0 ~< uj ~< 1 (10) 

These coordinates are regular in the neighborhood of the origin; in fact, the 
origin is uniquely represented by. placing the/3j and the 6j equal to zero (and 
thus the % equal to 1). These coordinates become singular (i.e., nonunique) 
only where the uj = 0. This turns out to be where one of the diagonal 
elements of the original unitary matrix vanishes. 

If one now writes 

Bj= xj + iyj (11) 

one can view the nine "coordinates" of the U 3 manifold as the three xj, the 
three yj, and the three 6j. If one desires a special unitary matrix, the 
condition 

61 + 6 2 + 6 3 = 0 (12) 

guarantees unit determinant, but it turns out to be too restrictive, preventing 
the eight independent coordinates from completely covering the manifold. 
The condition (12) turns out to be the correct one wherever 

- ~r ~< 6j + 6 k ~ ~r (all j ,  k) (13) 

If, for some j, k, 

r < 6j + 6k ~< 2~r 
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then require 

If, for some j ,  k, 

Y'~Sj = 27r (14) 

- 2 r r  ~< 8j+ 8k < -  Ir 

then require 

Eaj=-2  (15) 

These coordinates are useful because, as indicated in detail below, they are 
proportional to the "Gel l -Mann"  coordinates. Gell-Mann does not write 
down a set of coordinates for the SU 3 manifold explicitly, but they are 
implicit in his work, since he writes down a set of infinitesimal generators in 
the neighborhood of the origin which are just the ~ matrices. This choice (as 
opposed to some linear combination) defines, by implication, an 8-leg at the 
origin such that the derivatives of the unitary matrix in each of the 
coordinate directions, evaluated at the origin, are just the X matrices. 

If we take the coordinates defined by (8) through (15), and introduce 
two new diagonal coordinates, a t and a 2, defined by 

a2 o~ 2 --20t 2 
8 , = a , + - - ~ ,  8 2 = - a , + - ~ ,  8 3 = - - -  ~ (16) 

we obtain (all derivatives evaluated at the origin) 

OU OU OU OU 
Ox, = iX7' Oy, = i~kr' Ox 2 = i~5' Oy 2 = i~k4 

OU OU OU OU 
ax 3 = i~ 2' Oy 3 = i~l '  Oeq = i~k3' OOt 2 = i~8 

(17) 

Note that the condition (12) for a special-unitary matrix is automatically 
fulfilled by the linear combination (16). 3 

The geometry of SU 3 is best exhibited in terms of (left- and right-) 
invariant differential forms (Chevalley, 1946). A left-invariant differential 

3If the condition (14) is required, one can add 2~r/3 to each of the equations (16). If (15) is 
required, add -27r/3. The derivatives are unaffected. 
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form, to(x~), is defined by 

to = t o ( x  b ) ax  ~ = t (x 'c) a x  (18)  

where the x 'a are related to the x ~ by a left translation of the group 

x'd = X'd(y c, X a) or x '  = y x  (19) 

for a fixed group element y. The definition of the right translations is 
obtained by interchanging y and x in (19). There are as many linearly 
independent left (or right) translations (with constant coefficients) as the 
group has parameters. We number the left-invariant forms with the index E 
(which runs 1 .-.8, for SU3). Thus 

toe=_ l L  ( x b) dx a (20) 

where the 1~ constitute a set of eight covariant vector fields which do not 
change their functional dependence under left translations. We distinguish 
upper and lower case indices for the following reasons. The indices on the 
coordinate differentials are manifold-tensor indices, that is, they transform 
with the transformation matrices of the manifold. The lower indices on the 
left-invariant vector fields are also tensor (transforming) indices. The upper 
case indices are not of this type. They do not transform at all, under a group 
operation. They simply label the eight different differential forms tol . . ,  to8. 
For example, the quantity lab dx b is a manifold scalar. 

The left-invariant forms for an arbitrary Lie group were given by 
Cartan in the exponential map (Chevalley, 1946; Cartan, 1952), but the 
explicit form for S U  3 becomes forbiddingly complex. For matrix groups, the 
following formula gives a prescription for the left-invariant differential 
forms. Let U be a matrix representing a group element. Then the matrix 

t o = U - '  dU (21) 

contains as its matrix elements left-invariant differential forms (Flanders, 
1963). The w e are obtained from the matrix to by 

w = iwe~E (22) 

This can be easily inverted, using the properties of the ~ matrices to give 

to ~  ( 1 / 2 i ) t r  Xow (23) 
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3. CALCULATION OF THE INVARIANT F O R M S  

The calculation of the left-invariant forms now proceeds directly from 
(21), where U is defined by (8). We require also the following matrices: 

e - iSt 

D - I =  0 

0 

1 

Ui- i  = 0 

0 

U2 

UC ' =  0 

U 

U3 -~=  B; 
0 

0 0) 
e - i82 0 

0 e - i83 

~ 1 7 6  / 
/~l --/31 
~' u, 

0 -/32 ) 
1 0 

0 u 2 

-/33 0 ) 

u 3 0 
0 1 

(24) 

,,, = v - ' d r =  ( n V, V2V3 ) - "[ ( dD ) U, V2V3 + n ( dV, ) V2U3 + O V, ( dV2 ) U3 

+ n V ,  V2( dU3)] 

= U3-IU2-IUi- I  D - I (dD)UtU2U3 + U 3-1U2-IUl-I  ( d U  1 )U2U 3 

+ V 3- i v  2- ' ( d V 2 ) V  3 + V3-1dV3 (25) 

Note that dD = DS, where the matrix 6 = diag(i dS~, i d82, i d63). Therefore 
we have 

to = U3-Iu2- l  Ul - I (~Ul  + d U  I )U2U 3 -[- U3-Iu2-l (dU2 )U 3 q- U3-IdU 3 

= A + B + 

Now to find the matrix C = U 3- l d U  3 is straightforward: 

�89 (/33 d/3; - / 3 ;  d/33 ) "3 d/33 -/33 du3 

C = - u 3 d f l ; + f l ; d u  3 - � 8 9  

0 0 

C (26) 

0 

0 (27) 

0 

Note that C is anti-Hermitian and traceless. The matrix to = U - ~ d U  must 
have this property, as is well known, if U is special unitary. If U is merely 
unitary, the condition on the trace of to is removed. The matrix B is also 
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found from the definitions: 

BII = 

B12 = 

BI3 = 

n21 = 

B22 = 

B23= 

n31 -- 

B32 = 

B33 = 

Epstein and Schucking 

I 2 , ~u3 (#2 d#2 - #~' a#2) 
1 , ~u3#3 (#2 ct#2 - #~ dr2)  

,,3 ( u2 a#2 - #2 au2 ) 

I U # * f  3 3 ,  r2 dfl~ - fl~ aft2) 
' #  #*~ -~ 3 3 , #2 d#~ - #~ a#2) 

M ( u 2 a # ~  - # 2 d u 2 )  

- #3 ( u2 a#7 - #~ au 2 ) 
I , - ~ (#2 a#2 - #~ d#2) 

(28) 

Both this and the matrix C are seen to involve the same combinations of the 
coordinate differentials. It will be seen later that the matrix A and also the 
metric tensor of the manifold involve the same combinations. It is therefore 
convenient to introduce the following quantities: 

2~, = B, riB7 - B7 dB, 

bi = u i d # i  - fl, du  i (29) 

b* = u ,a#*  - #7 au, (i = 1,2,3) 

In terms of these we can write the matrices B and C as follows: 

( a3 b3 i )  
C =  -b~'  - a  3 (30) 

0 0 

u2a2 u3#3a 2 u3b 2 

B =  u 3 # ~ a  2 #3 f l~a2  # ~ b  2 (31) 

-- u3b ~ - #3b~  - a 2 

The a i are pure imaginary and the b* are the complex conjugates of the b i. 
From this the antihermiticity and the vanishing of the trace of the matrices 
B and C are easily seen. Because of the relationship (9), there must also be a 
relation between the a~, b~, and b*. This is easily seen to be given by 

# , b *  - # * b ,  = 2u ,a~ (32) 

for each value of the index i (no summation!). 
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A rather lengthy and tedious calculation also yields the matrix A 
directly from the definitions: 

All =iu2u2 dSl + (ulil3 + il~u3il2)[il~(iu I d~ 2 --b dUl)+ u3il~(iil I d~ 2 + dil l)  ] 

q- (illil3 - UlU3il2) 

X [il~(iil~ d~ 3 + d i l l ) -  u3il~(iu 1 d~ 3 + dUl) ] 

a 12 = iu22u3il3 d~l -- (Ulil3 -}- fl7/'/3il2) 

x [ i ( u 3 u l -  illil3il~') da2 + u3du t - & f l y  dild+(ill/33 - utu3il2 ) 

x [ - i ( u 3 B ~ + & B Y u , ) d a 3 - u 3 d B ~  B * - 3 &  dull 

A21 = iu22 u3il~ d~l + (UlU3 - fl~il2fl~ ) 

X [ -  i ( i l~u 1 + fllu3il~) d82 - fl~ du I - u3il~ d f l l l - ( i l l u 3  + Ulil2fl~ ) 

X [i(fl?fl~ -- UlU3il~ ) d33 + fl~ d i l t  - u3fl ~ du~] 

A22 = iu2 il3il7 d81 + ( ul u3 - il~il2 fl~) 

x [u3(iu ~ d82 + du~ ) -  il3il~(iilt da2 + dill)l (33) 

+(iltu3 + ulilz B~ )[ u3( ifl'( d83 + di lD+ fl3ilf( iul d83 + dut)l 

AI3 =iu2u3il2 d~ 1 - -  ( U l i l 3  + il~U3fl2)[u2(iil I d32 + dilt)] 

+ (illil3 - ulu3il2)[u2(iul d83 + dul)] 

A31 = iu2u3B ~ dSi + f l~ 'u2[-  il~( iu I d32 + d u l ) -  u3fl~( iilt d82 + dil l)] 

+ u~u2[ilf(iB7 d83 + dB~) -  U3il~(iu 1 d~ 3 + du I )] 

/123 = iu2B2 ilr da, + ( u,u3 -il~il2Bf)(iu2illd82 + u 2 dil l) 

- (illu3 + ulfl2B~)[u2(iu 1 d83 + du~)] 

A32 = iUzB~il3 d81 + il~u2[i( u3ul - illil~il3) d82 + u3 dul - il3il~ dill] 

+ u lu=[ i ( -  u3il~ - ulil~'il3)d83 - u3 dil7 - i l3 i l~  du~l 

A33 = ifl2fl~ d81 + il'~u~(iil I d~ 2 + d i l l )+  UlU2(iUl d83 + dul)  
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That this is anti-Hermitian and traceless is not at all obvious. This matrix 
can be tremendously simplified, however, by clearing all the parentheses 
and rearranging the terms in the combinations suggested by (29). It will be 
found that the differentials in the u i and fli and the fl* will fall easily into 
this grouping with no terms left over. The terms in the differentials of the 6~ 
also fall into a regular pattern, and it is found convenient to introduce also 
the following abbreviations: 

f = u lu3  - 

/2  = + B /S2.3 
(34) 

k = u3B, + 

/4 =B1 # 3  - u , u 3 &  

Utilizing (29) and (34) the matrix A is much more conveniently represented. 
In these abbreviations the matrix A is 

A, ,  = iu~u~ d61 + i f2f~ d62 + i f4f~ d83 + fl3fl~at - u 3 f l 2 ~ b  ~ 

- u23f12fl~a, + u318318~b , 

2 , A,2 = iu~u3fl3 d3 ,  - i d 8 2 / 2 f  , - i d 3 3 f 4 f  ~ + u3fl2b , + ~8~bS~b, 

- -  u 3 & a  I -- fl2fl?fl3u3al 

-- A'~2 = A2,  = iu2u3fl7 d61 - i f~ f~  d82 - if3/, ~ d83 - f12/~2b~ - flz~8~u3~8~al 

- u3f12 bl (35) _ u318~a I 2 . 

A13 = iu2u3~ 2 d31 - i f2u2~ l d32 + if4u t u2 d83 - ~3u2bl  + u2u332a 1 

-- A~3 = A3,  = iu2u31~ ~ d3,  - i f ~ t ~ u  2 d32 + i f~u lu  2 d33 + u2[J~b ~ + u2u31~a  ! 

A22 = iu29t8318~ d81 + i f l f  ? d82 + i f3f  ~ 433 -/~2/~/~3/~a I - - /~ /~3U3bl  

"Jr B2B~u3b~ .+ u2al 

A23 = iu2fl2fl  ~ dSl  + if?lSlu 2 d32 - i f3ulu 2 d33 + u2u3b 1 + u2Bzf l~  al 

- A~3 = A32 = iu2B~B 3 d31 + i f  I #~u2  d32 - i f~u I u2 d33 - u2u3b ~ + u 2 flr 

A33 = i#2/~ ~ d~ 1 --]- i ~ l J ~ u  2 d~ 2 .-~ iu2u~ d33 - u22 a, 
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Remembering that the u i are real and the ai are pure imaginary, the 
anti-Hermiticity is verified by inspection, term by term. For example, for 
A t~ all the terms are pure imaginary except the fifth term and the last term, 
which are the negative complex conjugates of each other; thus they add to 
give a pure imaginary result. A~2 is easily seen to be the negative complex 
conjugate of A21, term by term. That the trace is i(d3~ + d62 + d~J3) can be 
shown if one uses (9). Thus, for the S U  3 case, the trace vanishes. Thus we 
can write for the invariant differential forms, using (26), (30), (31), and (35), 
the following. We have written only the forms occurring on and above the 
main diagonal. The remaining are found from the anti-Hermiticity: 

r = iu2u2 d31 + i f2f~ a32 + i f4fg  a33 + fl3fl~a, - u3flzfl~b ~ 

-- u2fl2f l~al  + u3fl3flffb I + u2a2 + a 3 

2 , 
to12 = iu2u3fl3 d31 - i f  tf2 d32 - i f4f~ d33 + u3f lzb  I 

+ flfffl2b I - u3f l3a  1 - /~2f l f f /~3u3a l  + u3f13a2 + b 3 

to13 = iu2u3fl  2 d31 - i f2uzf l  t d82 + ifautU 2 d~ 3 - f l3U2bl  

+ u2u3fl2al + u3b 2 (36) 

0~22 = iu2 fl3fl~ d~ I + if, f ?  d~ 2 + i~3 f f  d~ 3 - 1 ~ 2 ] ~ ' ~ 3 ~ ' a l  

-- flfffl3U3bl + f l 21~u3b  ~ + u2al + fl3flffa2 - a  3 

~023 = iu2fl2fl  ~ dSi  + i f l l u 2 f ?  d32 - iu lu2 f3d33  + u2u3b 1 

+ u2fl2flTal + fl~b 2 

t033 = ifl2fl~ d31 + ifllfl~{u 2 d62 + iu2u 2 d83 - u~a, - a 2 

4. THE METRIC TENSOR 

One can introduce a left- and right-invariant metric into the group 
manifold as follows: 

For the metric tensor first we require a symmetric quadratic form in the 
coordinate differentials. The usual choice is to take the left-invariant metric: 

ds 2 = FAB~o'qo B -- F A f lAclB a dx  c dx  a (37) 
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ran is for the moment any nonsingular set of constants, which can be taken 
as symmetric without any loss of generality, since to'%B is symmetric. The 
form (37) is left invariant by construction. What condition will it have to 
obey to be also right invariant? It is well known that the metric (37) will be 
also invariant to right translations, if the FAn are just the so-called Killing 
form, i.e., 

I'AB = KA.  =- C ~ . C O B e  (38) 

where the C ~ D  are just the structure constants of the group. 
For the S U 3 group the structure constants are found most easily from 

the commutation properties of the infinitesimal generators. 4 These give 

C123 = 1 

CI47 = C246 = C257 = C345 = - CI56  = - C367 -m- 1/2 (39) 

C458 = C678 = v~-/2 

The skew symmetry gives the other nonvanishing constants. A straightfor- 
ward calculation from (38) then yields 

KAB = -- 33,4 B (40) 

Thus we can take as the metric tensor 

ds 2 = 3ABtoAto 8 = E to'4to A (41) 
A 

Since the matrix toq is anti-Hermitian and traceless, we can write for the 
eight real independent forms to~. �9 �9 tos 

i to I = to I I 

ito2 = to33 (42a) 

ito3 = (to~2 + to2 , ) /2  

to4 = ( t o t 2  - -  t o 2 1 ) / 2  

4See, for example,  P. Carruthers ,  Introduction to Unitary Symmetry, pp. 49 and 50. Wiley-Inter-  
science, New York, 1966. 
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i605 = (60,3 + 6031 ) / 2  

606 = (6013 - 6031)/2 

i607= (6023 + 6032)/2 
(42b) 

608 = (6023 -- 6032)/2 

which gives 

ds2 = E 60A60A = -(60,,60,, + 60336033 + 60,260z, + 6013603, + 60236031) (43) 

This can be explicitly calculated from (36), but the result is quite com- 
plicated and difficult to check. We can get at the metric tensor much more 
easily from a different expression, which we can show to be equivalent (see 
Appendix B). 

Take 

ds 2 = tr dU. dU* (44) 

This is left invariant as follows: 

U ~ B U ( B is a constant unitary matrix) 

d U  ~ B d U  

d U t ~  ( B d U ) t = d U t B t = d U t B  -~ 

tr dU. d U  t --, tr B dU. d U t  B -  t = t r B -  ~B d U d U  t = tr dU. dU* 

where we have used the cyclic property of the trace. This form of the metric 
tensor is also right invariant as follows: 

dU- (dU)B 

d U  t ~ ( d U . B )  t = B - l d U *  

tr dU. d U  t ~ tr dU.  B B -  mdU* = tr dU. dU* 

Thus both t rdU.  d U  t and KAB60n60 B are left- and right-invariant quadratic 
forms in the coordinate differentials. It is shown in Appendix B that any 
two forms having these properties are proportional to each other. 
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Consequently we can calculate the metric tensor from (44) rather than 
from (43), which makes the task much easier. 

ds 2 = tr dU. dU t = tr dU. dU - i 

u = DUIU U3 

U - I  = U3-1U2-1UI- ID-1 

dO= ( dD )UIU203 + D( dU,)U2U J + DU,( dU2)U 3 + DU, U2( au3) 

d U t =  U3-1U2-1UI-l dD -1 + U3-102 -1 dUl-tD -I 

+ U3 -I dU2-1Ul-IO -1 + dU3-1U2-1UI-ID - t  

ds 2 = tr[ dO dO - t + dUt dUl- ' + dU2 dU2-1+ dU3 dU3 - ~ 
(45) 

+ ( d D ) U  I ( d U , - ' ) D  -1 + (dD)UIU2(dU2-I)UI-1D -I  

+ (dD)UIU2U3(dU3-1)U2-1U1-I D -I + D ( d U  I )U I- ' (dD -1) 

+ (dO s )02(au2-1)01-1 + (de,)0203(a03-1)02-101-1 

+ DU,(dU2)U2- 'U, - ' (aD- ' )+U, (dU2)U2- ' (dUI  -I ) 

+ (dU2) U3 (dU- , )U2-1  + DUlU2(dU3)U3-,U2-1U1-1(d D - i )  

+ 0102( d03)03-102-1( MUI- 1 ) --~ 02( d03)03-1( d02- ' )] 

Surprisingly, this expression is quite straightforward to calculate. We make 
the following abbreviations for left- and right-invariant forms in each of the 
component matrices: 

( i = 0 - - . 3 ) ,  L~=(dU, - ' )U/  

= u, a u , - '  

(46) 

D = U o 

Li = Ui -I  dU i 

R, = ( dU~)U,.-t, 

and define ds/2 = tr(dUi)(dU~t). 
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Now if we use the cyclic property of the trace we get for (45) 

ds2=  E d s  2 + t r [LoR ~ + Lto R, + L,Rt2 + LtIR2 + L2Rt3 + Lt2R3 
i 

+ LoU, R~U,-'  + LoU, U2Rt3U2U, - '  + L,U2Rt3U2 - '  (47) 

+ LtoU, RzU, -I  + LtoU, U2R3U2 - 'U,- '  + LtlU2R3U2 - '] 

Now because U t = U -~, and because L ~ = -  Li (anti-Hermiticity), and 
R~ = - R~, we get 

ds 2 =  Eds/2 + 2tr[  LoR ~ + L,R~ + L2Rt3 + LoU, R~U,-' 
i 

+ LIU2Rt3U2-' + LoU, U2Rt3U2-'U, -1] (48) 

Each of the submatrices (two by two) L i is of the form (30). (30) is in fact 
precisely L 3. A quick calculation from the definition in (46) will yield for R~ 
a matrix of the same form but with opposite signs off the diagonal. For 
example, we have 

a 3 - b 3 0 / 

Rt3 = b~' - a 3 0 ) (49) 

0 0 0 

and similarly for the indices 2 and 1. The matrix L 0 turns out to be 
diag(i d3 I, i d32, i d33). If these are substituted into (48) and we specifically 
restrict ourselves to SU 3 (rather than U3) by setting 33 = -  31 - 3 2 ,  the 
metric tensor of the manifold results: 

3 

�89 ds 2 = d32 + d32 + d3,d32 + ~_. (du 2 + df l idf l*)+a,a 2 - a,a 3 
i = l  

+ a2a 3 - fl2fl~ala3 + fl~b3b t + fl2b~b'~ + ia 1 (d31 + 2 d32) 

+ ia2u2(2 d3, + d32)+ iu,fl,fl~b 3 (d3, + 2 d32) 

- iuiB~{B2b~(d31 + 2 d32 ) 

+ ia 3 [ ( a 3 , -  a32)+fl , f l t (1  + fl2fl~)(d3, + 2  d32) 

(50) 

- a3,  + a32)]  
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APPENDIX A: THE EXPONENTIAL MAP FOR THE S U  3 

GROUP 

Let  U be  an e lement  of  SU 3, then U = e in, where  H = H i ,  and  t r H  = 0. 
We can wri te  H = xjhj ,  where  the Xj are  the G e l l - M a n n  matr ices .  The  

fo l lowing def in i t ions  are made :  

r 2 = xjx j  = � 8 9  2, K = 1 H ,  
r 

a = - - I  t r H 3 = � 8 9  3 
3r 3 

Then  U = e i~r, and  it can be shown that  K n = anI + bnK + cnK 2. Here  I is 

the th ree -d imens iona l  uni t  matr ix .  The  cons tan t s  a n, b,,, c~ sat isfy a recur-  
s ion re la t ion  that  can be  wr i t ten  in mat r ix  form:  %+ i = A%,  or, in full, 

/an+/ (0 0 / 
b~+, = l  0 1 b~ 

c~+ I 0 1 0 Cn 

Let  gl ,  g2, g3 s tand  for the eigenvalues of  the mat r ix  A,  which will in genera l  

d e p e n d  on a.  
We  have that  lal ~ 2 / 3 ~ ,  and  in terms of  the above-de f ined  p a r a m e -  

ters the general  so lu t ion  for the ma t r ix  K can be  wri t ten.  One  mus t  

d i s t inguish  four  cases:  
Case 1: a = 0: (g l  = 0, gz = 1, g3 = - 1). One  f inds  

U= l + i s inr (  K ) - ( 1 - c o s r ) K  2 

Case 2." a = 2 /3v~- :  (g l  = g2 = - l / f 3 - ,  g3 = 2 / r  One  f inds 

{8 1 2 ir - i~/r 
U= I e-i~/r + e2ir/~ + - ~ - ~ - e  

+ K e2~r/r 3~/3 3 e -  

ir - ir/r + K2 e2ir/gr3-- + S e 

Case 3." a = - 2 / 3 v ~ :  (g l  = - 2 /v~- ,  gz = g3 = 1/v~-) .  Resul ts  for this 
case are  ob t a ined  f rom those for case 2 by  rep lac ing  i ---, - i, and  K ~ - K.  
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Case 4: O < lal < 2/3v~-: (gl * g2 = g3 ~e gl)" In this general case the 
solution is expressed in terms of the eigenvalues of the matrix A: 

U = I{ -~lg2g3 eig,r+ _~2eig2r+__~_3glg3 gig2 eig3r) . 

+ K{ hleg--L iglr "at--~2' g2 eig2r -~-~3g3 eigar~) 

q- K 2 { ~-~-leig'r -l- leig2r -k ~'~3 eig3r 2 

where we have used the abbreviations 

hi = ( g l -  g 2 ) ( g l -  g3) 

h2 = ( g 2 -  g l ) ( g 2 -  g3) 

h3 = ( g 3 -  g l ) ( g 3 -  g2) 

Cases l, 2, 3 can be obtained from case 4 by taking appropriate limits. 

APPENDIX B 

We prove here the theorem, referred to in the text, that any two metrics 
(symmetric quadratic forms in the coordinate differentials) which are 
simultaneously invariant to left and right translations are equivalent, up to a 
constant of proportionality, if the group is simple (the theorem is not true if 
the group is semisimple, a counterexample can be found). 

We first prove the following: 

Theorem 1. Let G be a semisimple, n-dimensional Lie group. Let 

to a = IAb ( x c) dx b (B1) 

be a set of n independent left-invariant differential forms, with 
A, B, a, b . . . .  = 1 �9 �9 �9 n. Define L~ by 

I'4b ( X ) Lbc( X ) = SAC (B2) 

Let 

= gob ( x ) dxa dx (B3) 
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be a pseudo-Riemannian metric on G, invariant under left transla- 
tions. Then one can find constants FAn = FnA such that 

ds 2 = FAstOAto n (B4) 

and 

IrAnl * 0 (B5) 

Proof One must have 

FAn ~176 =--- rASlAalno dxa dxb = gab dXa dXb 

One then sees immediately that this is satisfied (from B2), if 

FAn = LaALbBgab = I'BA 

(B6) 

(B7) 

The determinant condition is satisfied since all the factors on the right side 
of (B7) have nonvanishing determinant. The constancy is inevitable since 
each of the FAn is a left-invariant manifold scalar. This proves Theorem 1; 
we now proceed to the main theorem. �9 

Theorem 2. Let G be simple, KAn its Killing form, and let ds 2 be 
also right invariant. Then FAn is a multiple of KAB. 

Proof Since FAn and KAn are invariant under fight translation and KAn 
is nondegenerate (because G is semisimple), one can define K sc by 

and F c by 

KAsK nc = 8A c (B8) 

F c = KCBFnA (B9) 

F c is also invariant under right translations, by assumption. 
We need also the following: 

Lemma. Let the matrix H D be a generator of a right translation, 
then: 

[F, H D ] = 0  (all D) (B10) 
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Proof. The  condition for fight invariance of the metric is shown to be 
(Epstein, 1974, p. 46) 

r A r c 5 o  + r r B c 5 o  = 0 (B11) 

where the CAso  are the structure constants of the group. Multiply by K RA 
to get 

(a12) rR cqo + r S c # o  = 0 

Using the skew symmetry of the structure constants, 

FRFCFBD -- CRFDFFB = 0 (B13) 

Since the components of the matrix F are FRr, it is obvious that we have 
shown that [F, H o ] =  0 if we take as the matrix H o the components 
(H o)F8  = CFso.  Thus the Lemma is proved. 

Now since the matrices H D form an irreducible representation of the 
Lie algebra, and because G is simple, we must have that F is a multiple of 
the unit matrix by Schur's Lemma. Thus 

and thus 

FcA = KcBFBA = A S c  (B14) 

FA.B = ?,KAB (X :~ 0) (B15) 

proving the theorem. 

REFERENCES 

Baker, G. A. (1956). Physical Review, 103, I 119. 
Cartan, E. (1952). La th~orie des groupes finis et continus, reprinted in Mbrnorial des Sciences 

Mathematiques. Gauthiers-Villars, Paris. 
Chevalley, C. (1946). Theor), of Lie Groups, p. 6 and pp. 152-154. Princeton University Press, 

Princeton, New Jersey. 
Elliott, J. P. (1963). Proceedings Royal Socie O, of London, 245, 128, 562. 
Epstein, J. (1974). Doctoral dissertation, New York University, Physics Department (unpub- 

fished). 
Flanders, H. (1963). Differential Forms. Academic Press, New York. 
Gell-Mann, M. (1962). Physical Review, 125, 1067. 



216 Epstein and Schucking 

Hermann, R. (1966). Group Theory for Physicists. W. A. Benjamin, New York. 
Ikeda, M. et al. (1959). Progress in Theoretical Physics, 22, 715. 
Jauch, J. M., and Hill, E. L. (1940). Physical Review, 57, 641. 
Madumezia, A. (1971). Journal of Mathematical Physics, 12, 1681. 
Mumaghan, F. D. (1962). The Unitary & Rotation Groups, Chap. 2. Spartan, Washington, D.C. 
Ne'eman, Y. (1961). Nuclear Physics, 26, 222. 
Weyl, H. (1950). Gro,~p Theory & Quantum Mechanics, p. 386. Dover, New York. 
Wigner, E. (1968). In Applications of Group Theory, F. Loeb1, ed. Academic Press, New York. 


